- (g) Ba + Ni(NO₃)₂ \rightarrow Ba(NO₃)₂ + Ni
- (h) Al + $I_2 \rightarrow AlI_2$
- (i) $AgNO_3 + Na_2^2CrO_4 \rightarrow Ag_2CrO_4 + NaNO_3$
- 26. (a) Temperature
 - (b) Concentration
 - (c) Concentration
 - (d) Catalyst
 - (e) Surface area
 - (f) Oxygen (Possibly temperature too, because the flame temperature likely increases. However, the mixture is given extra oxygen so that the iron in the steel will also oxidize, which is a concentration effect.)
- 27. Alpha, beta, and gamma
- 28. Isotopes are atoms of the same element that differ in the number of neutrons they possess.
- 29. (a) ${}_{1}^{1}p$
 - (b) $\frac{1}{-0}n$
 - (c) ${}^{0}_{-1}\beta$, ${}^{0}_{-1}e$
 - (d) ${}_{0}^{0}\gamma$
 - (e) ${}_{2}^{4}\alpha$, ${}_{2}^{4}\text{He}$
- 30. (a) Both possess eight protons and eight electrons.
 - (b) Oxygen-16 has eight neutrons, and oxygen-17 has nine neutrons.
- 31. A beta particle is released from the nucleus of an atom through a process in which a neutron decays into other particles including a proton and an electron. The electron escapes from the nucleus as a beta particle. The newly formed proton remains in the nucleus, which increases the atomic number of the nucleus by one, creating a new element.

32.

(b) silicon-32

(c) beryllium-7

(d) beryllium-10

33.	Isotope	Mass Number	Atomic Number	Number of Neutrons
	helium-3	3	2	1
	helium-4	4	2	2
	nitrogen-14	14	7	7
	nitrogen-15	15	7	8
	oxygen-18	18	8	10
	neon-20	20	10	10

- 34. In a fusion nuclear reaction, small atomic nuclei combine together to form larger ones, typically with the release of energy. In a fission nuclear reaction, more massive atomic nuclei fragment to form less massive nuclei.
- 35. Currently, fission nuclear reactions are used in the generation of electricity and in nuclear weapons.

Understanding Key Ideas

- 36. (a) Nickel
 - (b) Nitrogen
 - (c) Helium, krypton
 - (d) Helium, oxygen, chlorine, nitrogen, and krypton
 - (e) Nickel, tin, sodium, gold
- 37. (a) $4\text{Na} + \text{O}_2 \rightarrow 2\text{Na}_2\text{O}$
 - (b) Mg + CuCl₂ \rightarrow Cu + MgCl₂
 - (c) $CaCO_3 \rightarrow CaO + CO_2$
 - (d) $CrCl_3 + 3KOH \rightarrow 3KCl + Cr(OH)_3$
 - (e) $2\text{NaCH}_3\text{COO} + \text{Mn(NO}_3)_2 \rightarrow \text{Mn(CH}_3\text{COO})_2 + 2\text{NaNO}_3$
- 38. Hydrocarbons are compounds that contain both carbon and hydrogen but not other elements.
 - (a) Hydrocarbon
 - (b) Not a hydrocarbon due to the presence of oxygen
 - (c) Hydrocarbon
 - (d) Not a hydrocarbon due to the presence of calcium and oxygen
 - (e) Not a hydrocarbon due to the presence of oxygen and the absence of carbon
- 39. (a) $2\text{NaF} \to 2\text{Na} + \text{F}_2$
 - (b) 6Li+ $N_2 \rightarrow 2Li_3N$
 - (c) $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$
 - (d) $K_2 \text{CrO}_4 + 2 \text{AgNO}_3^2 \rightarrow 2 \text{KNO}_3 + \text{Ag}_2 \text{CrO}_4$